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Abstract
A new trend in the theory of heavy-fermion superconductivity is reviewed,
paying attention to the role of critical valence fluctuations (CVFs). First of
all, the trends of superconducting mechanisms of electronic (repulsive) origin
are briefly summarized. Secondly, it is discussed that the pressure induced
enhancement of the superconducting transition temperature Tc and associated
anomalies observed in CeCu2(Ge, Si)2 can be understood in a unified way
by a single assumption that the systems are subject to the critical valence
transition of the Ce ion by the pressure tuning. Thirdly, it is shown that the
extended periodic Anderson model with the repulsion between f and conduction
electrons really has the potentiality of such a sharp valence transition of Ce ions
containing f electrons. In particular, enhancement of the residual resistivity, the
Sommerfeld constant and Tc, and T -linear resistivity, are shown to be concluded
from this model. Fourthly, the locality of this CVF is briefly discussed. Fifthly,
it is argued that CVF is enhanced by the magnetic field when the system is
located near the critical point of valence transition in relation to the case of
CeCu6. Finally, it is argued that the CVF mechanism is a rather universal one
which may be related to the physics of Ce115 and Pu115 compounds as well.

(Some figures in this article are in colour only in the electronic version)

1. Introduction—trends of unconventional superconductivity

Since the discovery of the paramagnon mechanism of Cooper pair formation in superfluid
3He in the early 1970s [1, 2], the electronic mechanism of superconductivity has been
widely recognized in the 1980s through the discovery of unconventional superconductivity
in heavy-fermion compounds CeCu2Si2, which later turned out to be located near the
antiferromagnetic (AF) phase boundary [3]. In particular, it was proposed first in heavy-
fermion superconductivity that the AF spin-fluctuation mechanism works in Ce-based heavy
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Figure 1. Schematic P–T phase diagram for CeT2Si2 (T = Pd, Rh) and CeIn3 showing rather low
Tc in a very narrow range of P ∼ Pc. The T dependence of the resistivity follows the non-Fermi
liquid law ρ(T ) ∼ T n , with n � 1.5. It is noted that the scale of Tc is expanded tenfold.

fermions [4, 5], and later on that it also works in high-Tc cuprates [6, 7], and some organic
metals which are all in proximity to the AF ordered state [8].

In the 1990s, the pressure induced superconducting phase has been identified near the
AF quantum critical point (QCP) in a series of Ce-based heavy-fermion compounds, such
as CeIn3 [9], CePd2Si2 [10], and CeRh2Si2 [11] as shown in figure 1, where the AF spin-
fluctuation mechanism is also considered to work [12]. Let us classify these compounds into
class (I).

From the theoretical point of view, these spin-fluctuation mechanisms can be regarded as
extensions of the Kohn–Luttinger idea in which the pairing interaction is shown to be induced
in an anisotropic channel by the second-order perturbation process on the basis of the Hubbard
model [13]. Recently, effects of higher-order perturbation on the pairing interaction have been
studied as a model of high-Tc cuprates [14] and Sr2RuO4 [15].

On the other hand, the superconducting mechanism of U-based heavy fermions together
with Pr-based filled skutterudite [16], which have a plural number of f electrons, seems
to have aspects somewhat different from that of Ce-based ones. Even their normal state
properties are quite different from Ce-based heavy fermions. For instance, UPt3 exhibits a
very unusual Fermi liquid state [17–19] apart from the multiphase of the superconducting
state [20]; UPd2Al3, which exhibits the itinerant–localized dual nature of plural f electrons,
is proposed to be mediated by ‘magnetic excitons’ [21, 22]; pressure induced ferromagnetic
superconductor UGe2 [23–25] appears near another phase boundary located deep in the
ferromagnetic phase and seems to be related to metamagnetic behaviour triggered by combined
SDW–CDW fluctuations there [26]. In any case, the superconducting mechanisms of f2-based
heavy fermions are far from true understanding.

In parallel to these developments, apparently different behaviour of Tc against the pressure
P was found in CeCu2Si2 and CeCu2Ge2. In particular, for CeCu2Si2, it was found even at
quite an early stage of research [27], while extensive research restarted in the mid-1990s. Both
compounds exhibit a pronounced dome of Tc at P far above Pc, which corresponds to the AF-
QCP: Tc exhibits a broad peak at around P � 5 GPa for CeCu2Si2 [27, 28], and at around
P � 16 GPa for CeCu2Ge2 [29–31]. These isostructural compounds have a similar phase
diagram in the P–T plane and similar physical properties, if the origin of the pressure is shifted
by about 12 GPa [32]. The schematic behaviour of Tc against the pressure P is illustrated in
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Figure 2. Schematic P–T phase diagram for CeCu2(Si/Ge)2 showing the two critical pressures Pc

and Pv. At Pc, where the Néel temperature TN → 0, superconductivity in region SC I is mediated
by AF spin fluctuations; around Pv, in the region SC II, critical valence fluctuations provide the
pairing mechanism. At T > TSC II, the resistivity is linear in temperature.

figure 2. Around the pressure where Tc takes a maximum, they exhibit a drastic decrease of the
coefficient A of the T 2 term of the resistivity, ρ(T ) = ρ0 + AT 2 and sharp enhancement of the
residual resistivity ρ0. Let us classify these compounds into a class (II).

From research activities over several years, it turned out that these phenomena, observed
in materials of class (II), have a single origin of the critical valence transition (CVT) of the Ce
ion at P = Pv [33–35], while it was suggested that the enhancement of Tc is related to the
valence transition of the Ce ion from the first stage of research [27]. The T -linear resistivity is
observed in a wide temperature region up to a few 10 K except for the very low temperature
region, which clearly shows that the universality class of the QCP at P = Pv is different from
that of the AF-QCP [30, 31]. It is also noted that Tc of the canonical class (I), shown in figure 1,
is far lower than the present case (shown in figure 2).

This novel point of view was reinforced by two recent experiments. First, the two separate
domes of Tc was observed in CeCu2(Si0.9Ge0.1)2, one at around P ∼ Pc and one P ∼ Pv [36],
suggest the existence of two different mechanisms related to fluctuations associated with two
different QCPs, one for the AF-QCP and another for the QCP associated with the CVT. It was
also revealed that Tc around Pc is lower than that around Pv by about half. Second, the detailed
and fine experiments of CeCu2Si2 under pressure were performed including measurements
of the specific heat in addition to the resistivity [37], and their results were successfully
explained by the theory which allows the CVT and fluctuations [34, 35]. Thus, the critical-
valence–fluctuation mechanism, a new mechanism of superconductivity of electronic origin,
was identified both experimentally and theoretically.

The so-called Ce115 compounds, CeTIn5 (T = Rh [38], Co [39], Ir [40]) [41], seem to
have both aspects of class (I) and (II). Namely, Pc and Pv do not seem to be well separated.

Another new development of unconventional superconductivity is that the intrinsically
gapless superconductivity was found in CeCu2Si2 [42] and CeRhIn5 [43] under a rather
narrow pressure range around the AF-QCP where the AF order and superconductivity coexist
microscopically. This novel state of superconductivity was explained as a realization of the so-
called odd-frequency gap state [44] which was shown to be possible [45] in the paramagnetic
state very close to the AF-QCP and the AF ordered state near the AF-QCP on the basis of the
itinerant–localized duality model of the Ce-based heavy fermions [46]. Indeed, it was shown
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by an explicit calculation of Tc that the ‘p-wave singlet’ odd-gap state dominates over the
conventional d-wave singlet state in such a region around the AF-QCP [45].

The purpose of this paper is to summarize our previous results to give a comprehensive
viewpoint of the critical-valence–fluctuation mechanism of unconventional superconductivity,
and to add recent consideration on the origin of the critical-valence–fluctuation phenomena
from a more physical point of view. In section 2, we give a qualitative description of the CVT
and its consequences, paying attention to the case of CeCu2Ge2, in which all the ingredients
of these phenomena appear. In section 3, we summarize the results by the microscopic
theory, which predicts the existence of the CVT, and peaks of the superconducting transition
temperature Tc and the residual resistivity ρ0, the enhancement of the Sommerfeld constant
γ (T ) ≡ C(T )/T at around the CVT point. It is also discussed why the T -linear resistivity
is observed at the CVT point, and that its origin is the locality of CVT phenomena, which
also explains why the d-wave pairing is induced by critical valence fluctuations (CVFs). In
section 4, we discuss the reason why the locality of CVF follows in the strongly correlated
Ce-based heavy fermions. In section 5, we argue that this CVF mechanism is rather universal
and can be the origin of unconventional superconductivity of other compounds under pressure,
such as that of Ce115 compounds. Finally, in section 6, we discuss the effect of the magnetic
field on the CVT and the possibility of emergence of the CVT in CeCu6 due to the magnetic
field of attainable strength to date.

2. Qualitative description of phenomena associated with the critical valence transition

2.1. Quantum critical valence transition

The qualitative difference in the P-dependence of Tc in figures 1 and 2 suggests that the
superconducting mechanism at around P ∼ Pv is different from that at around P ∼ Pc. In
particular, the pressure corresponding to the large peak of Tc is located on the higher pressure
side far away from Pc corresponding to the AF-QCP, which denies the AF spin-fluctuation
mechanism for the appearance of the Tc peak if one consults the strong-coupling theory based
on a phenomenological spin-fluctuation spectrum [12]. This point of view is supported further
by the following experimental results in CeCu2Ge2 [29].

Firstly, the A coefficient of the T 2 resistivity law decreases drastically by about two orders
of magnitude around the pressure P = Pv corresponding to the Tc peak. Since A scales
as (m∗/m)2 in the so-called Kondo regime, this implies that the effective mass m∗ of the
quasiparticles also decreases sharply there. This fall of m∗ is possible only if there is a sharp
change of valence of Ce, deviating from Ce3+, since the following approximate formula holds
in the strongly correlated limit [47, 48]:

m∗

m
= 1 − nf/2

1 − nf
, (1)

where nf is the f-electron number per Ce ion. It is also noted that the resistivity follows T -linear
dependence in the wide temperature regime T > TSC II, in contrast to the case of compounds
of class (I) where ρ(T ) ∼ T n with n � 1.5. This turned out to be a signature of quantum
CVT [37].

Second, the so-called Kadowaki–Woods (KW) ratio [49], A/γ 2, where γ is the
Sommerfeld coefficient of the electronic specific heat, crosses over quickly from that of a
strongly correlated class to a weakly correlated one. γ −1 can be identified with the Kondo
temperature TK, which is experimentally accessible by resistivity measurements. This indicates
that the mass enhancement due to the dynamical electron correlation is quickly lost at around
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Figure 3. Schematic view of the charge distribution of f and conduction electrons around an
impurity: (a) far from P ∼ Pv, where the effect of the impurity remains short ranged so that
the residual resistivity ρ0 is not enhanced; (b) at around P ∼ Pv, where the effect of the impurity
extends to the long-range region, because the correlation length ξv of valence fluctuations diverges
as P → Pv, leading to highly enhanced ρ0.

P ∼ Pv [50], in agreement with the previous point. The phenomenon can be understood if we
note the fact that γ consists essentially of two terms:

γ = γband

(
1 − ∂�(ε)

∂ε

)
≡ γband + γcor, (2)

where γband is due to the so-called band effect and γcor ≡ −γband∂�(ε)/∂ε is due to the many-
body correlation effect, with �(ε) being self-energy of correlated electrons. γcor and the A
coefficient are related to each other through the Kramers–Krönig relation, leading to the large
value of the KW ratio [50]. If γcor � γband, the KW ratio is attained. On the other hand, if
γcor ∼ γband, the ratio A/γ 2 should be reduced from the KW value considerably because the
effect of the γband cannot be neglected in its denominator [51].

Third, the sharp peak of the residual resistivity ρ0 at around P ∼ Pv can be understood
as a many-body effect enhancing the impurity potential. In the forward scattering limit, this
enhancement is proportional to the valence susceptibility −(∂nf/∂εf)μ, where εf is the atomic
f-level of the Ce ion, and μ is the chemical potential [35]. Physically speaking, local valence
change coupled to the impurity or disorder gives rise to the change of valence in a wide region
around the impurity which then scatters the quasiparticles quite strongly, leading to the increase
of ρ0 (see figure 3). It is noted that the effect of AF critical fluctuations on ρ0 is rather
moderate [52]. The enhancement of ρ0 can thus be directly related to the degree of sharpness
of the valence change because the variation of the atomic level εf is considered to be a smooth
function of the pressure. The critical pressure Pv is indeed defined by the maximum of ρ0.

Finally, the rapid volume change maintaining the crystal symmetry was reported near
P ∼ Pv by x-ray diffraction using a source of synchrotron orbit radiation, implying that the
rapid valence change occurs there [53].

A similar trend has recently been observed in CeCu2Si2 [37]. The summary of the results
of [37] is reproduced in figure 4. The aspects observed in CeCu2Ge2 are essentially the same
except for the origin of the pressure gauge (see figure 2).

Thus, it seems reasonable to seek the origin of the peak of Tc in the rapid change of valence
of the Ce ion from the trivalent state to the tetravalent side [33]. The drastic change of valence
has been known as the valence transition for almost half a century. A typical example is the
α–γ transition in Ce metal [54], which is a first-order transition with a critical point (Tcr, Pcr)
as in the case of the conventional liquid–gas transition. Valence transition phenomena have
long been a subject of a community of strongly correlated electron systems based on f-electron
compounds [55]. A trend of schematic phase diagrams in the P–T plane is shown in figure 5.
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Figure 4. Plotted against T max
1 (defined in the inset), a measure of the characteristic energy scale of

the system, are (a) the bulk superconducting transition temperature, (b) the residual resistivity and γ

coefficient of the electronic specific heat, and (c) the coefficient A of the ρ ∼ AT 2 law of resistivity.
Note the straight lines where the expected A ∝ (T max

1 )−2 scaling is followed. The maximum of
Tc coincides with the start of the region where the scaling relation is broken, while the maximum
in residual resistivity is situated in the middle of the collapse in A. Pressure increases towards the
right-hand side of the scale (high TK) [37].

In the typical case, the critical point is located at finite temperature Tcr, which is far larger
than the effective Fermi energy ε∗

F in heavy fermions. However, there is a possibility that
Tcr = 0 at some pressure Pv where the quantum CVT occurs and the CVFs develop around
there. Enhanced valence fluctuations are expected to develop even though Tcr > 0 as far as
Tcr 	 ε∗

F.

2.2. Model allowing quantum critical valence transition

The periodic Anderson model (PAM), which is considered to be a good model for heavy-
fermion metals, does not exhibit such a CVT no matter how the parameters are chosen. The
effect of pressure is twofold; one is to increase the hybridization V between f and conduction
electrons, and another is to shift the f level εf relative to the Fermi level εF, so as to approach
εF in Ce-based compounds. Indeed, these variations of parameters themselves cannot cause the
drastic change of valence of the Ce ion from that of the Kondo regime to the VF regime,
although the valence increases prominently as V is increased or the level εf is increased,
approaching the Fermi level [56]. In order for such a sharp valence transition to occur, we need
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Figure 5. Schematic P–T phase diagram of typical valence transition in Ce-based compounds,
where Tv(P) denotes the phase boundary and crosses denote the critical end point (Tcr, Pcr). There
are two cases, Tv(P = 0) > 0 or Tv(P = 0) < 0. As a special case of the latter, a case where
Tcr = 0 or Tcr � 0 is possible. In such a case, CVFs develop in the low temperature region at
P ∼ Pv, where Tcr(Pv) = 0, as indicated by the shaded region.

to take into account the repulsion Ufc between f and conduction electrons [55, 57]. Namely, the
PAM should be extended as follows:

H =
∑
kσ

(εk − μ)c†
kσ ckσ + εf

∑
kσ

f †
kσ fkσ + Uff

∑
i

nf
i↑nf

i↓

+ V
∑
kσ

(c†
kσ fkσ + h.c.) + Ufc

∑
iσσ ′

nf
iσ nc

iσ ′ , (3)

where the conventional notations for the PAM are used except for Ufc, the f–c Coulomb
repulsion.

The effect of Ufc on the valence change of the Ce ion has been discussed in a number
of contexts and models. With regard to the impurity Anderson model, the effect of Ufc

was discussed in relation to optical experiments, valence-band photoemission (PES) and
bremsstrahlung isochromat spectroscopy (BIS) [58–61]. Costi and Hewson studied the effects
of Ufc by a numerical renormalization group (NRG) approach [60, 61]. They concluded that
in the Kondo regimes Ufc can be absorbed into other parameters (V , εf and Uff), and the same
set of renormalized parameters on Ufc = 0 is consistent with both the valence-band PES and
BIS spectra and the thermodynamic properties. The effect of increasing Ufc is to increase the
Kondo temperature, thus to decrease the number of f electrons nf per ion more rapidly. Indeed,
a related model has been investigated on the basis of the NRG approach by Takayama and
Sakai, and it turned out that nf rapidly decreases at εf ≈ EF − Ufc, EF being the Fermi level,
as εf is increased so as to approach EF [62]. This result implies that the rapid valence change
occurs where εf + Ufc, the energy of the f1 state, and EF, the energy of the state f0+ (extra
conduction electron on the Fermi level), are nearly degenerate, giving rise to enhanced valence
fluctuations. Then, Ufc has a considerable effect on the valence fluctuation, although it does not
cause a critical valence instability in the impurity Anderson model.
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It is not easy to examine the effects of Ufc in the PAM due to the lattice effect in general.
In the case of the impurity model, the conduction band plays the role of an electron bath so
that the chemical potential μ is essentially fixed. However, in the case of the lattice model, μ

is considerably affected by Ufc itself so that we have to treat the problem in a self-consistent
fashion. In particular, such a self-consistent treatment is indispensable when the valence state of
Ce begins to leave the Kondo regime to the VF one under high pressure. In the physical picture,
however, the condition for the valence transition may be still given by that of the degeneracy of
two valence states of Ce, Ce3+ � Ce4+:

εf + Ufc〈nc〉 ≈ EF, (4)

where 〈nc〉 is the average number of conduction electrons at each f site. There exist some
studies of the extended PAM with Ufc within Hartree–Fock-like approximations [63–65]. Even
in this simple level of approximation, Ufc is responsible for the rapid change of the number of
f electrons as the level εf is tuned, leading to the first order transition in the large Ufc region.
Then, by tuning the strength of Ufc, it is possible to reduce the critical end point associated
with valence transition down to zero temperature, where quantum critical fluctuations should
prevail.

We studied the extended PAM with Ufc in one dimension by the variational Monte Carlo
method on the extended Gutzwiller variational wavefunction [66], and showed that the valence
of f electrons decreases rapidly as the level of f electrons εf is increased, if Ufc is moderately
large, comparable to half of the bandwidth of conduction electrons. Quite recently, the same
model in one dimension was treated by the density matrix renormalization (DMRG) method,
giving asymptotically exact properties beyond the mean-field-like approximations although the
physical picture was not greatly altered [67].

The similar effects of the d–p Coulomb interaction in the so-called d–p model have been
investigated as a possible charge fluctuation mechanism of the high Tc superconductor [68, 69].
On the other hand, the physics discussed in the present paper is rather different from the
‘valence fluctuation mechanism’ proposed for heavy electron superconductors in [70].

3. Results on microscopic treatments of extended PAM

3.1. Superconductivity induced by critical valence fluctuations

In [34], the model Hamiltonian (3) with a spherical conduction band was treated by the mean-
field approximation in the slave boson formalism to discuss the possibility of valence transition
and by the Gaussian fluctuation theory around the mean-field solution to discuss a possible
superconducting state. As shown in figure 6, central results of [34] are summarized as follows.

(i) Sharp valence change is caused by the effect of Ufc with moderate strength of the order of
the bandwidth of conduction electrons, when the f level εf is tuned to mimic the effect of
pressure.

(ii) The superconducting state is induced by the process of exchanging the slave-boson
fluctuations for the values of εf around which the sharp valence change occurs.

(iii) The symmetry of the so-induced superconducting state is d wave if the spherical model
is adopted for conduction electrons. However, as seen in the argument below, it is the
anisotropic pairing that is induced by the CVF modes due to their almost local nature.

It is remarked that aspects of the pressure dependence of Tc and A observed
experimentally [30], shown in figure 4 [37], are well reproduced, since εf simulates the pressure
variation. The derivation of these results will be briefly shown hereafter.
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Figure 6. Tc for d-wave channel and n̄f, f-electron number per site and ‘spin’, as a function of εf.
The total number of electrons per site and ‘spin’ is set as n = 0.875, and the c–f hybridization is set
as V = 0.5D. The unit of energy is given by D, the Fermi energy of the parabolic conduction band
if it were decoupled from f electrons: the dispersion ε�k = k2/2m − D is adopted for the conduction
electrons.

3.1.1. Mean-field solution for valence change [34]. The Hamiltonian (3) was treated by the
slave-boson and large-N expansion approach [71–73], which has been shown to be effective
for studying thermodynamic properties, superconducting transition temperature, transport
properties, etc of the usual PAM [71–77] as far as the low temperature region T 	 TK is
concerned. Following these methods, the effect of the f–c Coulomb interaction in (3) was taken
into account on the level of a Gaussian fluctuation approximation.

By generalizing the Hamiltonian (3) to that with the N-hold spin–orbit degeneracy, and
assuming the strongly correlation limit, i.e. Uff → ∞, the Hamiltonian is transformed as
follows:

H =
∑
�km

(
εkc†

�km
c�km + εf f †

�km
f�km

)
+ V√

NL

∑
�k �qm

(
c†

�km
f�k+�q mb†

�q + h.c.
)

+ Ufc

∑
ilm

f †
il fil c

†
imcim, (5)

where bs are slave-boson operators describing the f0 state and the constraint

Qi =
∑

m

f †
im fim + b†

i bi = 1 (6)

is required at each site in order to maintain an equivalence of the truncated Hilbert space and
the original one. To generate a 1/N expansion variables are written as follows:

Qi → q0 N

b → b
√

N

V → V/
√

N

Ufc → Ufc/
√

N .

(7)

In the calculation, the radial gauge was adopted following [71]. (Although the radial and the
Cartesian gauge formulations are ultimately equivalent, spurious infrared divergences do not
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appear in the radial gauge approach [73].) A local gauge transformation, bi(τ ) = ρi (τ )eiθi (τ ),
fim(τ ) = f ′

im(τ )eiθi (τ ) and λ′
i (τ ) ≡ λi + θ̇i(τ ), was performed. Then, the partition function is

given as

Z =
∫

D(cc† f f †ρλ) exp(−S), (8)

where the action S is given as

S =
∫ β

0
dτ

[∑
�k�k′m

f †
�km

(τ ){(∂τ + εf)δ�k�k′ + 1√
NL

iλ(�k − �k ′; τ )} f�k′m(τ )

+
∑
�km

c†
�km

(τ )(∂τ + ε�k)c�km(τ ) + V√
NL

∑
�k�k′m

{c�km(τ ) f�k′m(τ )ρ(�k − �k ′; τ ) + h.c.}

+ i
N√
NL

∑
�k�k′

ρ(−�k ′; τ )λ(�k ′ − �k; τ )ρ(�k; τ ) − iq0 N
√

NLλ(0; τ )

+ Ufc

N

∑
ilm

nf
il n

c
im

]
. (9)

In the above expressions, variables f ′ and λ′ have been rewritten as f and λ, respectively,
and the Jacobian factor

∏
iτ ρi(τ ) has been neglected following [71].

By introducing two kinds of Stratonovich–Hubbard fields ϕf and ϕc for Ufc, the functional
integral over the fermion fields can be performed in equations(8) and (9). Then, the partition
function equation (8) can be transformed as follows:

Z =
∫

D(ρλϕfϕc) exp(−S), (10)

S = −N Tr(ln Â) + i
N√
NL

T 2
∑
kk′

ρ(−k)λ(k′ − k)ρ(k)

− iq0 N
√

NL

∫
dτλ(0; τ ) − NUfc

4
T
∑

k

ϕf(k)ϕc(−k), (11)

where the abbreviation k = (�k, iωn), etc has been introduced and matrix Â is defined as

Akk′ =
[

(−iωn + ε�k)δkk′ + Ufc
2
√

NL
T ϕf(k − k′) T V√

NL
ρ(k − k′)

T V√
NL

ρ∗(k − k′) (−iωn + εf)δkk′ + T√
NL

iλ(k − k′) + T Ufc
2
√

NL
ϕc(k − k′)

]
.

(12)

With the use of the mean-field solution for ρ, λ, ϕf, and ϕc, which optimizes the action
(11), the f-electron number (per ‘spin’), n̄f ≡ nf/2, as a function of εf, is given for a series
of values of Ufc/D, D being the Fermi energy of the spherical conduction band, as shown in
figure 6. Here we set the hybridization as V = 0.5D and total electron number per ‘spin’ as
n ≡ n̄f + n̄c = 0.875. We adopted the dispersion of conduction electrons ε�k = k2/2m − D,
where the bottom of the conduction band is set as −D, and assumed that the density of states
N0(ε) per conduction electron with particular ‘spin’ is given such that

∫ D
−D dεN0(ε) = 1.

These results are consistent with those of previous works [63–65], and also with a
physical picture that the rapid valence change occurs at the condition (4) which is fulfilled
in the case where the energies of f0- and f1 state are degenerate. For much larger values
of Ufc or smaller values of V than those presented in figure 6, there occurs a first-order-like
discontinuous transition although this is not shown there (see [66, 67]). In the mean-field level
of approximation for the slave boson Hamiltonian, our treatment of the effect of Ufc is just like

10
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Figure 7. Sommerfeld constant γ versus Kondo temperature TK, defined by TK = ε̄f − μ. The
parameters used are the same as those in figure 6. Results for different values of Ufc/D lie on the
same line, exhibiting a universal behaviour.

that in the Hartree–Fock approximation [63–65]. It is noted that the valence change occurs
more sharply if we estimate it in the much more appropriate approximation on the extended
Gutzwiller variational wavefunction [66]. In this sense, the sharpness of the valence change
may be underestimated by the present treatment.

Using the mean-field solution, ρ̄, λ̄, ϕ̄f, and ϕ̄c, the dispersion of quasiparticles is given as

E±
�k = 1

2 [ε̄f + ε̄�k ±
√

(ε̄f − ε̄�k)2 + 4V̄ 2], (13)

where

ε̄k ≡ εk + Ufcn̄f,

ε̄f ≡ εf + iλ̄/
√

NL + Ufcn̄c,

V̄ ≡ V ρ̄/
√

NL,

(14)

where n̄f ≡ 〈nf〉MF, the f-electron numbers per site and ‘spin’, and n̄c ≡ 〈nc〉MF, the number of
conduction electrons per site and ‘spin’. Then, the density of states ρ(μ) of quasiparticles at
the Fermi energy is calculated, and the Sommerfeld constant γ of the specific heat is given by
the relation

γ = π2

3
Dρ(μ)N, (15)

where N (now N = 2) is the degeneracy of the quasiparticles. The so-called Kondo
temperature, or the characteristic temperature, of the present model, is defined simply as
(ε̄f − μ). In figure 7, we can see that the relation TK ∝ γ −1 holds rather nicely. It is remarked
that the relation TK versus γ with different values of Ufc are lying on a line exhibiting a kind
of universality. It is suggested that the effect of Ufc can be absorbed into the other parameters
of the conventional PAM at least at the mean-field level, as in the case of the single-impurity
Anderson model. However, in the lattice case, the first-order-like transition occurs through the
effects of Ufc even in the mean-field approximation. This is considered to be a distinctive effect
of Ufc in the PAM.

11
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Figure 8. Feynman diagram representing the integral equations for the scattering amplitude of two
quasiparticles � from (�k,−�k) to (�k ′, −�k ′).

Figure 9. Feynman diagram for the irreducible vertex part �(0) to leading order in 1/N . The
explicit form of the fluctuation propagator D is given by equation (17) and its interaction vertex g
with quasiparticles arises from the matrix Â given by (12).

3.1.2. Superconducting transition temperature [34]. Next, a possible type of the
superconducting gap is discussed near the region where the rapid valence change occurs
owing to Ufc, the f–c Coulomb interaction, in the extended periodic Anderson model. In
the conventional PAM, problems of determining the superconducting transition temperature
Tc have been studied by several authors within the slave-boson and 1/N-expansion method
[75, 76], in which the Gaussian fluctuations of relevant parameters around the mean-field
solution. Following their method, here the Gaussian fluctuations of ρ̃ ≡ ρ − ρ̄, λ̃ ≡ λ − λ̄,
ϕ̃f ≡ ϕf − ϕ̄f, and ϕ̃c ≡ ϕc − ϕ̄c, are taken into account. The Tc is obtained from the integral
equation of the particle–particle scattering amplitude, �, for two quasiparticles with opposite
momentum near the Fermi surface (see figure 8). The quasiparticle operators can be represented
by a unitary transformation in terms of f- and conduction electron operators as[

γ
(+)

�k
γ

(−)

�k

]
=
[

u�k v�k
−v�k u�k

] [
f�k
c�k

]
, (16)

where γ (±) corresponds to the eigenvalues E±, equation (13), respectively. The scattering
amplitude � is obtained from the two-quasiparticle correlation function,

〈Tτ γ
(−)

�k′,m
(τ1)γ

(−)

−�k′ ,m′(τ2)γ
(−)†
−�k,m′(τ3)γ

(−)†
�k,m

(τ4)〉,
by removing the external legs.

To leading order in 1/N , the irreducible vertex part �(0) includes only single-fluctuation
exchange processes as shown in figure 9. With the use of relation (16), the analytic expression
of �(0) is given as follows [34]:

�(0) = v4

{
Dλλ + Ufc

2
Dλϕc + Ufc

2
Dϕcλ +

(
Ufc

2

)2

Dϕcϕc

}
− 4uv3

{
V Dλρ + Ufc

2
Dϕcρ

}

+ u2v2

[
2

{
Ufc

2
Dλϕf +

(
Ufc

2

)2

Dϕcϕf

}
+ 4V 2 Dρρ

]

12
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− u3v4V
Ufc

2
Dϕfρ + u4

(
Ufc

2

)2

Dϕfϕf , (17)

where fluctuation propagators Ds are defined as

Dαβ(�k; τ ) ≡ −〈Tτ α(�k, τ )β†(�k, 0)〉, (18)

where α, β are ρ̃, λ̃, ϕ̃f, ϕ̃c.
With the use of (17), Tc is calculated in the weak coupling theory in which the external

momenta are set on the Fermi surface, i.e. |�k|, |�k ′| → kF, and the static limit, ω → 0, is taken
in the boson propagators. Then, the linearized gap equation is represented by figure 8 Namely,
the scattering amplitude is decomposed into the Legendre polynomial as

�(�k, �k ′) =
∞∑

�=0

(2� + 1)��P�(�̂k · �̂k
′
). (19)

The scattering amplitude �� corresponding to the channel with relative angular momentum � is
given by

�� = �
(0)
�

1 + ρ(μ)�
(0)
� ln( TK

T )
, (20)

where the �
(0)

� are related to the �(0)(�̂k · �̂k
′
) by the formula

�
(0)

� = 1
2

∫ 1

−1
d(cos θ)�(0)(θ)Pl(cos θ). (21)

Then the transition temperature Tc for the �-wave channel is given by

Tc = TK exp

[
1

ρ(μ)�
(0)

�

]
. (22)

Here it is noted that the energy cut-off, corresponding to the Debye frequency, is given by
TK ≡ ε̄f − μ, the bandwidth of the quasiparticles.

A non-negligible Tc is obtained for the d-wave (� = 2) channel as far as the channels
� = 0, 1 and 2, are concerned. The results of Tc versus εf are shown in figure 6 for a series of
values of Ufc, the repulsion between f and conduction electrons. There exists a sharp peak of
Tc at around εf where nf starts to show a rapid decrease. Its tendency becomes more drastic as
Ufc increases, making the valence change sharper. In the region where the f-electron number is
decreased enough, Tc is strongly suppressed.

It can be analysed which term in equation (17) plays an important role for the pairing
interaction. As seen in figure 10, it turned out that the major part of �(0)(q) (=Vk,k′ with
q = k − k′) is induced by the scattering process (f, f) → (f, c) or (f, c) → (f, f), in which
the valence of f electrons is changed directly. Here it is remarked that the pairing interaction
�(0)(q) is almost q independent up to q < 3kF/2, reflecting the local nature of CVF, while
the dimensionless coupling �(0)(q)ρ(0) at the Fermi level is greatly enhanced near the CVT
point. It is this locality that is the origin of d-wave pairing as in the case of two-dimensional
isotropic Fermi liquid near the magnetic phase boundary [78]. Namely, the q-independent
part of �(0) gives a short range repulsion of the s-wave component, while the decrement
(at q > (3/2)kF) from the q-independent part gives us an attractive component with large
wavenumber transfer of O(2kF), promoting the pairing with higher angular momentum, d wave
in the present case. This locality should be maintained for the case where the conduction band
is subject to the effect of lattice periodicity. In the latter case, the attractive interaction works
among quasiparticles located at adjacent sites and p- or d- or f-wave-like pairing is induced
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Figure 10. �(0)(q) as a function of momentum transfer q for each scattering channel included in
equation (17). For example, ‘ffff’ means the v4 term of equation (17). The others are represented
similarly.

Figure 11. Real-space pairing interaction �0(r)ρ(0). The parameter set adopted is the same as that
in figure 10.

depending on the shape of the Fermi surface because the attraction due to CVF does not have
‘spin’ dependence, unlike the spin-fluctuation mechanism [4, 79].

The reason for the d-wave pairing can be seen more clearly by inspecting a real space
picture of the pairing interaction

�0(r) =
∑

q

�0(q)eiq·r. (23)

The result for �0(r) is shown in figure 11 for the same parameter set as figure 10. This clearly
shows the existence of the extended attraction together with the one-site strong repulsion. If
we assume kF ∼ π/a, a being the lattice constant as in typical metals, the attraction works
between the nearest neighbour sites. Then, according to the discussion in section 1, the d-wave
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pairing is promoted. The p-wave ‘spin-triplet’ pairing is also possible in principle in this case
because the attraction mediated by the valence fluctuation has no spin dependence.

3.2. Physical picture of critical-valence–fluctuation mechanism [37]

The physical interpretation of the present valence fluctuation mediated pairing interaction is
given as follows. A clue comes from the local nature of the interaction, and the prediction of
d-wave pairing symmetry, which together imply nearest-neighbour pairing. One can imagine
a largely filled f band, with each filled f1 site experiencing a Coulomb repulsion Ucf with the
respective conduction (c-) electrons. As the pressure is increased and εf moves closer to the
Fermi level εF, there will come a point where εf + Ucf〈nc〉 = EF and the f band will start to
empty. On an individual 4f0 ‘hole’ site, the Ucf interaction will be absent, thus an increased
density of conduction electrons would be energetically favourable at this position. If this extra
‘screening’ conduction electron density is not strictly localized onto the atom itself, but spreads
onto neighbouring sites, the f electrons on Ce atoms around the original ‘hole’ site will feel an
increased repulsion. The tendency to transfer electrons from the f to conduction bands will be
locally reinforced, explaining intuitively the increasingly catastrophic drop in n f for larger Ucf,
predicted in [34]. For large enough Ucf, phase separation would be expected to occur for some
values of εf.

The attractive pairing interaction can be explained as follows: consider an isolated pair
of 4f0 ‘holes’, accompanied by their cloud of conduction electrons. If these are separated by
two lattice positions, with an intervening filled 4f1 site, the two clouds of conduction electrons
will overlap at the intermediate site, further increasing the Coulomb energy at that point. It
would therefore be energetically favourable for the two ‘holes’ to be on neighbouring atoms,
thus with attractive interaction. The attractive interaction between ‘holes’ is equivalent to that
between ‘electrons’, so that this argument would give an intuitive understanding of the origin
of the valence–fluctuation mechanism of superconductivity.

In the Kondo regime where nf ≈ 1 (n̄f ≈ 1/2), the spin fluctuations are believed to play the
most important role for the occurrence of superconductivity. In such a region we have to take
into account the higher order term beyond 1/N to discuss the instability to the superconducting
state, since the spin-fluctuation contribution to the effective interaction appears only beyond at
the order (1/N)2 [76]. However, the present approach of the order of 1/N is still expected to
work in the region where the valence fluctuations play an important role.

3.3. Valence fluctuations versus orbital fluctuations

There exist a few viewpoints different from ours for explaining the anomalous properties of
CeCu2Ge2. One of them is to attribute its origin to the orbital fluctuations in the multiband
periodic Anderson model, in which the broad bandwidth under high pressure is expected to
change the degeneracy of the f-electron state. Indeed, this has been proposed in [30], paying
attention to the fact that, at the pressure corresponding to the peak of Tc and ρ0, the two
temperatures T max

1 and T max
2 at which the resistivity peaks merge with each other, indicating the

Kondo temperature becomes of the order of the crystalline electric field (CEF) splitting. The
orbital fluctuation mechanism has also been proposed as a possible mechanism for explaining
the phenomena observed in CeCu2Ge2, and discussing that the orbital fluctuation is enhanced
where TK is comparable to CEF splitting [80]. The effect of orbital fluctuations on the spin-
fluctuation mechanism has also been studied as a model of Ce115 systems [81].

However, the merging of T max
1 and T max

2 seems to be a general feature at Pv in compounds
where a critical valence transition is thought to exist. This can be understood as follows.
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First of all, the so-called Kondo temperature TK, related to T max
i (i = 1, 2), depends

crucially on the degeneracy (2�+1) of the local f state: TK ∼ D exp[−1/(2�+1)ρF|J |], where
D is the bandwidth of conduction electrons, ρF the density of states of conduction electrons
at the Fermi level, and J the c–f exchange coupling constant [82]. Even though the sixfold
degeneracy of the local 4f state is lifted by the CEF effect, leaving the Kramers doublet ground
state with the excited CEF levels with excitation energy �CEF, the Kondo temperature TK is
still enhanced considerably by the effect of the excited CEF level [83].

Secondly, the technical degeneracy of CEF levels, relevant to the Kondo effect, is affected
by the broadening �E of the lowest CEF level. If �E 	 �CEF, the degeneracy relevant to
TK is twofold. On the other hand, if �E > �CEF, it increases to four- or sixfold. The level
broadening is given by �E � zπρF|V |2, where |V | is the strength of c–f hybridization, and z
is the renormalization factor, which gives the inverse of mass enhancement in the case of the
lattice system. It is crucial that �E is very sensitive to the valence of the Ce ion because z is
essentially given by equation (1). In particular, the factor z increases from the tiny value in the
Kondo regime, z ∼ (1 − nf) 	 1, and approaches unity in the so-called valence fluctuation
regime.

Since the factor πρF|V |2 � �CEF in general for Ce-based heavy electron systems, the ratio
�E/�CEF, which is much smaller than unity in the Kondo regime, greatly exceeds unity across
the valence transformation around P ∼ Pv, leading to the increase of the technical degeneracy
of the f state, irrespective of a sharpness of the valence transformation. Therefore, T max

1 should
merge with T max

2 , which corresponds to four- or sixfold degeneracy of the 4f state due to the
effect of finite temperature, i.e. T ∼ �CEF. This may be the reason why T max

1 increases and
approaches T max

2 at pressure where Tc exhibits the maximum, or the KW ratio changes between
strongly and weakly correlated classes. This general behaviour has recently been verified by a
microscopic calculation on the basis of the multiorbital PAM with CEF splitting [84].

3.4. T-linear resistivity and enhanced Sommerfeld coefficient at P = Pv [37]

The T -linear temperature dependence of the resistivity observed in a narrow pressure region
around P ∼ Pv is understood in the following discussions. The origin of d-wave
superconductivity induced by CVF is the locality of pairing interaction as discussed in a
previous section. Namely, the static limit of the effective interaction �(0)(q, iωm) between
quasiparticles is enhanced greatly around P ∼ Pv, and is almost independent of q , the
momentum transfer, up to ∼3/2 of pF. This must be due to the local nature of the CVF,
whose response function, χv(q, ω), is also almost q independent in the low frequency region.
On this observation, we present here a semi-phenomenological theory explaining the T -
linear resistivity and the enhancement of the Sommerfeld coefficient γ around P ∼ Pv. A
microscopic origin of the locality will be discussed in section 4.

We adopt an exponentially decaying phenomenological form for the valence–fluctuation
propagator (dynamical valence susceptibility) χv:

χv(q, ω) ≡ i
∫ ∞

0
dteiωt 〈[nf(q, t), nf(−q, 0)]〉 (24)

= K

ωv − iω
, for q < qc ∼ pF (25)

where nf(q) is the Fourier component of the number of f electrons per Ce site, K is a constant
of O(1) and the parameter ωv parameterizes the closeness to criticality. ωv is inversely
proportional to the valence susceptibility χv(0, 0) = −(∂nf/∂εf)μ, εf being the atomic level
of the f electron of the Ce ion, and μ the chemical potential.
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Figure 12. Feynman diagram for the self-energy due to the one-fluctuation mode exchange process.
λ denotes the coupling between the valence–fluctuation mode and the quasiparticles.

The retarded self-energy �R
vf(p, ε + iδ) gives a measure of the quasiparticle effective mass

and lifetime respectively in its real and imaginary parts. The explicit form of �R
vf(p, ε + iδ)

corresponding to the Feynman diagram figure 12 can be calculated in a standard way.
In typical limiting cases, Im �R

vf(pF, ε) can be straightforwardly calculated in the
approximation on the dispersion of the quasiparticles, ξp−q � −vq cos θ , where θ is the angle
between p and q, v is the quasiparticle velocity and p is assumed to be on the Fermi surface,
i.e., p = pF.

T = 0, ε �= 0:

Im �R
vf(pF, ε) � −|λ|2 K q2

c

32π2v
ln

(
1 + ε2

ω2
v

)
, (26)

where qc is the cut-off wavenumber of the order of kF.
ε = 0, 0 < T 	 εF:

Im �R
vf(pF, 0) � −|λ|2 K q2

c

4π2v

T

ωv
tan−1 T

ωv
� −|λ|2 K q2

c

4π2v

⎧⎪⎪⎨
⎪⎪⎩

(
T

ωv

)2

, T 	 ωv

π

2

T

ωv
, T � ωv.

(27)

The latter result, Im �vf(pF, ε = 0) ∝ T/ωv for T � ωv, implies that almost all the critical
valence–fluctuation modes can be regarded as classical at T > ωv, and T -linear dependence
stems from the asymptotic form of the Bose distribution function g(ω) = 1/(eω/T −1) � T/ω.

In the limit ωv 	 vpF, the real part of the self-energy, shown in figure 12, can be also
calculated easily at T = 0 and ε ∼ 0, leading to

Re�R
vf(pF, ε) � −|λ|2 K q2

c

2π2v

ε

ωv

∫ 1

0
du

1 − u2

u2 + 1
ln

∣∣∣∣ 1

u

∣∣∣∣ (28)

∝ − ε

ωv
, (29)

where u = vqt/ωv.
The T -linear dependence of Im �R

vf(p, 0), for T > ωv, (27), implies T -linear resistivity,
as the quasiparticles are subject to the large angle scattering by the critical valence–fluctuation
modes. These are effective in a wide region in the Brillouin zone due to their local nature and
easily couple to the Umklapp process of quasiparticle scattering. This result is consistent with
the experimental fact that T -linear resistivity is observed in a narrow pressure region around Pv

which is considered to correspond to the nearly critical transition of the valence of the Ce ion.
Such a T -linear dependence has been discussed in the context of high-Tc cuprates with

a marginal Fermi liquid (MFL) assumption, [85] and charge transfer fluctuations were once
considered as an origin for MFL [85, 86], while further theoretical models have been put forth
up to now [87]. Excepting the T -linear resistivity, the present result is different from MFL
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behaviour. The self-energy exhibits different energy dependence, while the idea for the origin
of our singular behaviour shares aspects similar to the first idea of a charge transfer mechanism
for high-Tc cuprates [68, 86]. �(ε) in the MFL model is given as �(ε) ∝ (ε ln ε − i|ε|) [85],
which is indeed different from the present case (equations (26) and (29)). In any case, it is to
be noted that T -linear resistivity is accompanied by the peak of Tc in both systems, high-Tc

cuprates and CeCu2Si2.
The result (29) implies that the mass enhancement (1−∂Re�R

vf(ε)/∂ε) is expected around
P ∼ Pv. Namely, the effective mass is given by

m∗ ∝ m̄
1

ωv
, (30)

where m̄ is the effective mass renormalized by the conventional correlation effect, leading to
heavy electrons, i.e. not including the effect of CVF. This latter effective mass m̄ exhibits a
drastic decrease around P ∼ Pv, while the second factor of (30) is enhanced. Both effects
should be reflected in the Sommerfeld coefficient γ , so that the peak of γ ∝ m∗ is shifted to
the lower pressure (larger m̄) side, and the anomaly of γ due to the valence fluctuations may be
smeared to some extent. Nevertheless, some trace should be observed. (The shift of the peak
of γ can be understood as the superposition of the two trends using a model P-dependence
of m̄ and ωv.) Indeed, the experimental result presented in figure 4 may be explained by this
effect. A similar trend has been reported in a series of solid solutions of Ce-based intermetallic
compounds [88].

3.5. Enhanced residual resistivity [35]

The effect of CVF on impurity scattering can be considered in the context of the many-body
renormalization effect of the impurity potential in general [52, 89–94]. More than three decades
ago, Betbeder-Matibet and Nozières [89] showed on the basis of the Ward–Pitaevskii identity
that the impurity potential, in a one-component Fermi liquid, is renormalized in the forward
scattering limit as

ũ(�k → 0) = 1

z(1 + F s
0 )

u(�k → 0), (31)

where u(�k) is the bare nonmagnetic impurity potential and ũ(�k) is the renormalized one, z is
the renormalization amplitude including all of the many-body effects and F s

0 is the Landau
parameter relevant to the correction of the charge susceptibility. Relation (31) implies that
the forward impurity scattering is renormalized in proportion to the charge susceptibility
χcharge = z−1(2NF)/(1 + F s

0 ). Recently, it was shown [35] that a similar relation holds for
the impurity scattering of f electrons in the two-component Fermi liquid described by the
Hamiltonian (3):

ũ(�k → 0) ≈ − 1

2NF

(
∂nf

∂εf

)
μ

u(�k → 0), (32)

where nf is the f-electron number density and NF is the density of states of noninteracting
electrons described by (3) at the Fermi level. This is an analogue of relation (31), in which the
factor 1/z(1 + F s

0 ) is re-expressed as χcharge/NF. The relation (32) implies that the impurity
scattering is critically enhanced if the valence of the Ce ion changes critically when the f level
εf is tuned, relative to the Fermi level, by the pressure.

Let us recapitulate the derivation of the relation (32). We start with the model
Hamiltonian (3). The one-particle Green function for a given spin direction in this system
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is given formally as

[
G−1

i j ( �p, ε)
]

=
[

Gff( �p, ε) Gfc( �p, ε)

Gcf( �p, ε) Gcc( �p, ε)

]−1

(33)

=
[

ε − εf + μ − �ff( �p, ε) −Vp − �fc( �p, ε)

−V ∗
p − �cf( �p, ε) ε − ξ �p − �cc( �p, ε)

]
, (34)

where �ff is the self-energy of the f electron and there also exist �fc and �cc as the many-body
effect due to Uff and Ufc. It is noted that G−1

i j represents the i j -element of the inverse matrix of

the Green function, e.g. G−1
11 �= G−1

ff while G11 = Gff.
For coupling to nonmagnetic impurities, the scattering matrix for this system is given

generally as ui j(�k) = ∑4
a=1 ua(�k)λa

i j , where u1 and u2 are the variations of potential on
f electrons and c electrons, respectively, while u3 and u4 represent the strength of the f–
c mixing scattering. Here, λa

i j is the bare vertex for coupling to impurities and is given by

[λ1
i j ] = (1 + τ z)/2, [λ2

i j ] = (1 − τ z)/2, [λ3
i j ] = τ x/

√
2 and [λ4

i j ] = τ y/
√

2, with �τ being the
Pauli matrices in the f–c space.

In the following, a Greek index, α, represents the dependence on both the component
i = 1, 2 and the spin σ = ↑,↓, and the summation is assumed to be for repeated indices.
Then, the one-particle Green function and the scattering matrix mean the tensor product
multiplied by the unit matrix with respect to the spin variables.

The Ward–Pitaevskii identity relevant to the present problem is given considering the linear
response of Gγα caused by the shift of the parameter, denoted by εa , with the chemical potential
μ being fixed. Here, εa is the f level εf, the centre of the conduction band εc or f–c mixing
V , i.e., t [εa] = (ε1, ε2, ε3, ε4) = (εf, εc,

√
2V ′,

√
2V ′′), with V ′ and V ′′ being the real and

imaginary parts of V , respectively. One can show, by analysing the structure of the perturbation
series of the self-energy, that the following identity holds [95]:

−
(

∂G−1
γα(p)

∂εa

)
μ

= λa
γα +

(
∂�γα(p)

∂εa

)
μ

(35)

= λa
γα − i

∫
d4q

(2π)4
�k

γ δ,αβ (p, q){Gβζ (q)Gκδ(q)}k, λ
a
ζκ , (36)

where �k is the so-called k-limit of the full vertex function, and {GG}k is that of the particle–
hole Green function pair with the four-vector abbreviations p = ( �p, ε), etc. The process of
the renormalization of impurity potential is represented by the Feynman diagram, as shown in
figure 13. In the limit of forward scattering, i.e. k → 0, the renormalized potential ũa(�k) and
the bare one ua(�k) are in the relation

lim
k→0

ũa(�k) = lim
k→0

1
2λ

a
αγ ub(�k)

×
[
λb

γα − i
∫

d4q

(2π)4
�k

γ δ,αβ (p, q){Gβζ (q)Gκδ(q)}kλ
b
ζκ

]
. (37)

The reason why the k-limit vertex appears in (37) is that the impurity scattering is elastic,
maintaining the energy transfer ω = 0. Therefore, on the basis of relation (36), the impurity
potential is renormalized by −(∂G−1

γα( �p, ε)/∂εa)μ in the limit k → 0.
In heavy electrons, the important effect of the impurity on the the quasiparticles arises

from the variations of potential on f electrons, because the quasiparticles consist mainly of
f electrons. Of such effects, those due to the displacement of non-f elements from the regular
alignment around Ce ions are subject to remarkable renormalization by the CVF, because the
impurity potential due to such effects is under the unitarity limit and has potential for further
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Figure 13. Feynman diagram for the exact vertex correction of impurity potential u(�k).

renormalization. On the other hand, the defect of Ce ions gives rise to the unitarity scattering
from the beginning in the heavy electron state so that its potential is only subject to a gradual
renormalization with a weak anomaly around a possible transition point from the Kondo regime
to the VF regime. It is noted that even if we consider only the effect of the shift of the f level,
i.e. in the case of u2 = u3 = u4 = 0, the many-body effect due to Ufc gives rise to effective f–c
and c–c scattering, as can be seen in (37).

In the case of heavy fermions whose quasiparticles consist mainly of f electrons, the
relations (36) and (37) are simplified in such a way that the renormalization of the impurity
potential is given essentially through f-electron scattering:

lim
k→0

ũ(�k) = − lim
k→0

u(�k) × ∂

∂εf
G−1

ff (p, ε)

∣∣∣∣
μ

. (38)

The derivatives in (38) are shown to be given by

∂

∂εf
G−1

ff (p, ε)

∣∣∣∣
μ

≈
(

1

NF

∂nf

∂εf

)
μ

. (39)

Then the relation (32) results, implying that the impurity scattering is critically enhanced if the
valence of the Ce ion changes critically when the f level εf is tuned by pressure. Indeed, it
happens to be the case as shown theoretically in section 3.1 that the derivative −(∂nf/∂εf)n can
diverge in the system described by the model Hamiltonian (3) with appropriate values of Ufc

and εf. This means −(∂nf/∂εf)μ also diverges there, because the following relation holds, up
to the approximation (39):

(
∂nf

∂εf

)
μ

≈
(

∂nf
∂εf

)
n

1 − (
∂nf
∂n

)
εf

, (40)

where the derivative −(∂nf/∂n)εf is a small number of the order of z, the renormalization
amplitude.

In order to see how this enhancement of the impurity potential affects the behaviour of
the resistivity, we need to determine the k-dependence of ũ(k) for scattering from �p − �k/2
to �p + �k/2 near the Fermi surface. Although generally it is not easy to determine the k-
dependence accurately, it may be reasonable to parameterize it as

ũ(�k) ≈ 1

η + Ak2
u(�k), (41)

where η is the inverse valence susceptibility, η−1 ≡ |(∂nf/∂εf)μ|/NF, and Ak2
F ∼ O(1). As

mentioned above there are two kinds of impurity potential for f electrons. One is due to the
disorder of non-f elements and the other is due to the defect of Ce ions. The former gives
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essentially the Born scattering, while the latter causes the scattering in the unitarity limit. Then
the residual resistivity is expressed as

ρ0 = ρBorn
0 + ρunit

0 , (42)

where ρBorn
0 is subject to huge enhancement by the CVF and ρunit

0 is essentially unaffected.
Indeed, ρBorn

0 is given as

ρ0 ≈ cimp

〈
2π NF|u(�k)|2(1 − cos θ)[
η + A

(
2kF sin(θ/2)

)2]2

〉
FS

, (43)

where cimp is the concentration of the impurity, θ is the angle between �p±�k/2, and the on-shell
condition ε = ξ �p±�k/2 = 0 has been used. 〈· · ·〉FS means that the average with respect to �p over
the Fermi surface is taken. Here, it is noted that an explicit dependence of the renormalization
amplitude does not appear due to cancellation between that for DOS and that for the damping
rate of quasiparticles [96]. Calculation of the angular average over θ is performed easily, giving

ρBorn
0 ∝ cimp ln

1

η
. (44)

This result remains valid even if we take into account higher order terms by calculating the
t-matrix. This is because the scattering by the renormalized potential (41) is merely the
Rutherford scattering in the limit of η → 0.

It should be noted that the present result is not contradictory to the Friedel sum rule
according to which the scattering probability does not diverge as long as the extra charge
accumulated locally around the impurity is finite [97, 98]. The form of the renormalized
impurity potential (41) becomes long ranged as η → 0 even though the bare potential is short
ranged. Namely, the change of the valence near the impurity site extends over a long range in
proportion to 1/r , r being the distance from the impurity site as shown in figure 3(b). As a
result, the total amount of valence change around the impurity from that of the host metal is
divergent while the local charge of f and conduction electrons remains finite. Therefore, the
effect of impurity becomes long ranged, making the scattering probability divergent.

Then, (42) is expressed as

ρ0 = Bcimp|u(0)|2 ln

∣∣∣∣
(

−∂nf

∂εf

)
μ

/
NF

∣∣∣∣ + ρunit
0 (45)

where the coefficient B depends on the band structure of host metals. The first term of (45)
exhibits huge enhancement at the CVT point where |(∂nf/∂εf)μ| diverges. The expression (45)
explains not only the huge enhancement of ρ0 observed in CeCu2Si2 and CeCu2Ge2 at P � Pv

but also the universal behaviour of ρ0(P) for a bunch of samples with different qualities of
crystals [37]. This huge enhancement should be compared to the moderate enhancement
around the magnetic quantum critical point where the enhancement arises only through the
renormalization amplitude z, as discussed in [52].

Quite recently, variation of nf for a series of concentration x was measured by XAS in
EuCu2(Ge1−xSix)2, showing rapid change of nf at x � 0.7 [99]. Making use of an empirical
relation relation of P–x , η ∝ (−∂nf/∂ P)(∂ P/∂εf) was estimated, and then it turned out that
the enhancement of the residual resistivity ρ0 around P = Pv (x = 0.7) can be explained
semiquantitatively by relation (44). Of course, in order to discuss the case of the Eu ion with
the 4f6–4f7 configuration, the model (3) has to be extended to the multiorbital case.
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4. Locality of quantum critical valence transition

In this section, the reason for the locality of CVF in Ce-based heavy-fermion results is explained
in semi-qualitative discussion. The universality class of CVF is expected to belong to that of
the Gaussian fixed point while the wavenumber dependence of the valence susceptibility χv is
extremely weak [100]. It is remarked that there exists a crossover temperature Tx above which
the dynamical exponent z is z = ∞, while z = 3 [33] in the low temperature limit T 	 Tx .
In any case, the condition of the Gaussian fixed point, d + z > 4, is fulfilled. (There exists a
cubic term with respect to the order parameter in general in the present problem. However, it
is shown that the cubic term is marginally irrelevant in the case d = 3 and z = 3 [101].) Then,
the estimation of χv based on RPA can give us a clue to clarify its behaviour [102]. Due to the
c–f hybridization, the enhancement of χv is given as

χv(q, iωm) ∼ χ
(0)

cf (q, iωm)

1 − Ufcχ
(0)

cf (q, iωm)
(46)

where χ
(0)

cf (q, iωm) is defined as follows:

χ
(0)
cf (q, iωm) ≡ −T

∑
n

∑
�p

Gc( �p, iεn)Gf( �p + �q, iεn + iωm) (47)

where Gf and Gc are the Matsubara Green function for f and conduction electrons, respectively.
A dynamical response of (47) is expressed in terms of the spectral weight of the f electron as
follows:

χ
(0)

cf (q, ω) =
∑

�p

∫
dx

π

∫
dy

π
Im GR

f ( �p + �q, x)Im GR
c ( �p, y)

f (x) − f (y)

ω + y − x
, (48)

where f (x) = 1/(ex/T +1) is the Fermi distribution function, and the spectral weights Im GR’s
are given by

Im GR
f ( �p + �q, x) = �′′

�p+�q(x)(
x − εf − �′

�p+�q(x) − |V �p+�q |2
x−ξ �p+�q

)2 +
(
�′′

�p+�q(x)
)2

, (49)

and

Im GR
c ( �p, y) =

�′′
�p(y)|V �p|2

[(
M �p(y)

)2 +
(
�′′

�p(y)
)2
]

{[(
M �p(y)

)2 +
(
�′′

�p(y)
)2
]

(y − ξ �p) − |V �p|2 M �p(y)

}2

+ |V �p|4
(
�′′

�p(y)
)2

,

(50)

where �R
p (ε) ≡ �′

p(ε) + i�′′
p(ε) is the f-electron self-energy function, and M �p(y) ≡

y − εf − �′
�p(y). It is noted that the q dependence of χ

(0)
cf (q, ω), (48), arises only through

that of Im Gf( �p + �q, x), (49). In heavy fermions, the self-energy � is almost local so that its
wavenumber dependence can be safely neglected. Therefore, the q-dependence would arises
through that of ξ (dispersion of conduction electron) and V (c–f hybridization). Since the f-
electron spectral weight, (49), is dominated by the incoherent part around x ∼ εf − μ < 0 in
the heavy fermion situation, the main contributions of p-summation and x-integration of (48)
arise from the region ξp > 0 and x ∼ −|μ − εf|. Indeed, the weight of the coherent part
associated quasiparticles (which would result in appreciable q dependence) amounts only to a
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tiny contribution of the order of z ∼ mband/m∗ 	 1. Thus, the q-dependence of χ
(0)

cf (q, ω) is
estimated as

χcf(q, 0) = χcf(0, 0)

[
1 + O

(
V

|μ − εf|
)2 ( q

qc

)2
]

(51)

where qc ∼ π/a with a being the lattice constant. In a typical heavy-fermion compound,
(V/|μ− εf|)2 < 10−1, the q-dependence of the valence susceptibility χv is expected to be very
small, consistent with microscopic calculations discussed in section 3.1.

5. Effect of magnetic field on valence transition

Roughly speaking, the valence-transition temperature Tv is expected to be influenced
considerably by the magnetic field of the order of the effective Fermi energy E∗

F. Therefore, in
heavy-fermion metals, Tv is easily changed by a moderate magnetic field of the order of 10 T.
Indeed, it has been reported recently that Tv of the α–γ transition in Ce0.8La0.1Th0.1 vanishes in
a magnetic field about 50 T [103]. Similarly, it is expected that the critical end point (Pcr, Tcr)
also vanishes when enough magnetic field H is applied. Namely, it is expected that the QCP of
the valence transition is induced by the magnetic field.

The H -dependence of Tv near the QCP is given as

Tv ∝ (Hv − H )1/2, (52)

where Hv is the critical magnetic field. This is derived from the Clapeyron–Clausius relation
on the (T, H ) plane with the pressure P fixed:(

∂Tv

∂ H

)
P

= − (M2 − M1)

(S2 − S1)
(53)

where M1(2) and S1(2) are the magnetization and the entropy in the valence–fluctuation (Kondo)
regime, respectively. In the low temperature limit (Tv → 0), (S2 − S1) ∝ Tv > 0, and
(M2 − M1) ∼ constant > 0 because the specific heat and the susceptibility are larger in the
Kondo regime (2) than the valence–fluctuation regime (1). Thus, equation (53) is approximated
as

dTv

dH
∼ − 1

Tv
. (54)

Then, near the critical magnetic field H = Hv, the relation (52) is obtained.
The critical temperature Tcr of the end point will also vanish on applying magnetic field.

In this case, the critical pressure Pcr changes simultaneously in general, so that the relation (52)
cannot be applied directly. However, it is reasonable to expect a similar relation will hold:

T 2
cr ∝ (Hcr − H ). (55)

This gives an H -dependence of Tcr around the QCP of the valence transition. According to the
spirit of the theory for the second order phase transition of Landau [104], the relation (55) is
valid in the disordered state, for the regime of Tcr < 0 in this case as long as the system is near
the critical condition. Then, the QCP of the valence transition can be induced by the magnetic
field available for the moment in such a system.

A potential candidate is CeCu6. The pressure dependence of the coefficient A, the residual
resistivity ρ0, and Tmax, where the resistivity ρ(T ) takes a maximum, was reported by Raymond
and Jaccard [105]. In figure 14, the relation between A and T max of CeCu6 for a series of
pressures is displayed, together with those of CeCu2Si2 and CeCu2Ge2. The dashed curve is
for CeCu6. We can see that the valence changes rather sharply at around T max = 100 K, which
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Figure 14. A versus T max (T max
1 ) of CeCu6 (CeCu2Si2 and CeCu2Ge2). Dashed lines are for

CeCu6 [105], filled circles are for CeCu2Ge2 and open symbols are for CeCu2Si2 [30].

corresponds to P = 5 GPa [105]. This clearly shows that CeCu6 is a system near the QCP of
the valence transition although its position is a bit distant from its QCP compared with the case
of CeCu2Si2 and CeCu2Ge2. It is noted that the AF-QCP of CeCu6 is induced by replacing Cu
by Au [106], and seems to be located at P = Pc �= −0.3 GPa [107]. Then, the pressure for
the QCP of the valence transition is again about 5 GPa higher than that for the AF-QCP as in
CeCu2(Si, Ge)2. The characteristic temperature T ∗

F (or the effective Fermi energy ε∗
F) of CeCu6

is very low, of the order of 10 K, reflecting the heaviness of its effective mass. Therefore, it is
expected that the QCP is recovered by the magnetic field of the order of T ∗

F , i.e., H ∼ 10 T. The
most interesting possibility is that the odd-parity superconductivity with equal-‘spin’ pairing
may be promoted under the magnetic field H ∼ Hc because the pairing interaction induced by
the CVF works between the quasiparticles at adjacent sites and is ‘spin’ independent.

The heavy-fermion compound CeRu2Si2, exhibiting metamagnetic behaviour, is also
expected to exhibit a valence transition at P ∼ 4 GPa, offering us another candidate for
investigating the effect of magnetic field on valence transition [108].

Quite recently, the magnetic-field dependence of Tv has been discussed theoretically on the
basis of the idea of the Kondo volume collapse [109]. However, as for the property associated
with the QCP of the valence transition, there has been no theory of magnetic field so far to
our knowledge. This problem certainly deserves to be explored in future study. According
to preliminary calculations based on the 1/N-expansion treatment of the model (3) with the
magnetic field in the strongly correlated limit, the QCP of the valence transition is really
promoted by magnetic fields [110, 111].

6. Generality of critical-valence–fluctuation mechanism of superconductivity

In previous sections it has been shown that the CVF of the Ce ion is a single origin for varieties
of anomalous properties of CeCu2(Si, Ge)2 under pressure. The superconductivity realized at
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Figure 15. Phase diagram of Ce(Co,Rh, Ir)In5 in P–T –x space.

P ∼ Pv is in a high-Tc state in the sense that Tc is of O(10−1) of the renormalized Fermi
energy. In this sense, the critical-valence–fluctuation mechanism may offer one of the routes to
the room temperature superconductivity. A natural question is whether there are other Ce-based
systems in which the CVF plays an important role. In this section, some candidates are briefly
discussed.

The properties of CeTIn5 (T = Co, Rh, Ir) have the aspect similar to CeCu2(Si, Ge)2.
Indeed, the P–T phase diagram of CeRhIn5 is quite similar to that shown in figure 2 although
the peak structure of Tc is less prominent. ρ(T = Tc) exhibits a sharp peak structure at
P = Pmax where Tc takes the maximum, and the temperature dependence of ρ(T ) follows
an approximate T -linear behaviour [112, 113]. This similarity can be seen more clearly
in figure 15, in which TN and Tc are shown in P–T –x space, x being the concentration
of CeCo1−x Rhx In5 (0 � x � 1), CeRh2−x Irx−1In5 (1 � x � 2), or CeIr3−x Cox−2In5

(2 � x � 3) [14]. It is noted that the line of the magnetic QCP (Pc) is surrounded by the
line of the Tc maximum around which ρ ∝ T behaviour is observed. This suggests that the Tc

maximum is accompanied by the drastic valence change of the Ce ion.
From this point of view, the T -linear resistivity (at T > Tc) observed in CeCoIn5

at ambient pressure should be attributed to nearly CVF rather than the two-dimensional
antiferromagnetic critical fluctuations. Indeed, the latter point of view has difficulties in the
following four points.

(i) Three dimensionality of the magnetic fluctuations cannot be neglected although the Fermi
surface is in a quasi-cylindrical shape. Indeed, the anisotropy of the resistivity is only a few
times which is far less than 6×102 in Sr2RuO4 [114], and 5×102 in high-Tc cuprates [115].

(ii) Even in two dimensions, it is rather difficult to derive T -linear resistivity because the
electric current is carried mainly by the quasiparticles near the cold spot, which is not
subject to the scattering of critical fluctuations [116, 117].

(iii) CeCoIn5 is located off the magnetic critical point, which corresponds to CeCo0.4Rh0.6In5

[14]. Very recent results of solid solution CeCo(In, Cd)5 under pressure also suggest
that the AF-QCP for CeCoIn5 is located on the negative pressure side around P =
−0.6 GPa [118]. Indeed, this can be easily understood if we realize the fact that 6.5%
Cd doping is equivalent to applying pressure by 0.9 GPa, and that the AF-QCP is located
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CeCoIn

pc
*
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Figure 16. Phase diagram of Ce(Co, Rh)(In,Cd)5 under pressure [118]. The dashed line represents
a hypothetical Néel temperature realized if the superconducting state were absent [120, 121].
Consulting the phase diagram of CeCo(In, Cd)5 in [118], CeCoIn5 at ambient pressure is estimated
to locate at P = 2.8 GPa in the CeRhIn5 phase diagram as indicated by an arrow. p∗

c � 1.9 GPa
denotes the pressure where TN and Tc coincide [120].

at pressure higher by 0.43 GPa than that where TN and Tc coincide [118]. This situation
can be seen in figure 16.

(iv) The residual resistivity exhibits a very drastic decrease on pressure application from
ρ0 � 3 μ� cm at ambient pressure to ρ0 � 0.2 μ� cm at P = 1.5 GPa [119], suggesting
the existence of the quantum CVT at P ∼ 0. It is difficult to explain this phenomenon
only from an effect of critical antiferromagnetic fluctuations [52]. It is noted here that
ρ0 � 3 μ� cm corresponds to the mean free path of � ∼ 100 Å of impurity scattering,
which can cause a pseudogap behaviour as observed in experiment [119].

The importance of the CVF can be seen more clearly in the case of CeIrIn5, in which the
maximum of Tc is attained in the pressure region where the AF fluctuations are suppressed,
as has been revealed by In115-NQR measurement [122]. Two separated Tc domes have been
observed under pressure in CeIr3−x Cox−2In5 (x = 0.8) [123] as in CeCu2(Si0.9Ge0.1)2 [36].
These facts strongly suggest that the CVF is developed in Ir-based compounds under pressure
and at the origin of their unconventional behaviours.

It is also of interest to note that the recently discovered Pu-based superconductors
PuCoGa5 [124] and PuRhGa5 [125] exhibit a trace of enhanced valence fluctuations. From
a general point of view, 5f electrons in the Pu element itself are located near the boundary
between the localized state with a nearly integral valence and the itinerant state with a fractional
valence. Indeed, the systematic variation of the Wigner–Seitz radius for a series of actinide
elemental metals clearly shows that the ionic radius changes drastically between Pu and Am
metals, suggesting the existence of the valence fluctuations in metallic compounds including
such elements associated with the ‘valence transformation’ [126].

Circumstantial evidence supporting this point of view is that the ratio A/γ 2, A being a
coefficient of the T 2-term in the resistivity and γ the Sommerfeld coefficient, of these Pu115
compounds ((A/γ 2) � 3.4 × 10−6 (μ� cm (K2 mol/mJ)2) for PuCoGa5 and (A/γ 2) �
2 × 10−6 (μ� cm (K2 mol/mJ)2) for PuCoGa5 [127]) is between that for strongly correlated
metals (the Kadowaki–Woods ratio, (A/γ 2)KW � 1.0 × 10−5, μ� cm (K2 mol/mJ)2) and that
for weakly correlated metals ((A/γ 2) � 0.4 × 10−6, μ� cm (K2 mol/mJ)2 [50]). This also
suggests that Pu115 compounds are not strongly correlated metals near magnetic instability
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but are subject to the valence fluctuations of the Pu ion, although the Sommerfeld coefficient
(γ ∼ 77 (mJ/K2 mol) for PuCoGa5 [124] and γ ∼ 95 (mJ/K2 mol) for PuRhGa5 [125])
is moderately enhanced. The value of the A-coefficient is that of the zero temperature limit
obtained where the superconductivity is destroyed by the magnetic field. Further circumstantial
evidence is that the T dependence of the resistivity ρ is nearly linear as far as one can see in
figure 3 of [124], although it is claimed in that paper that ρ increases approximately as T 1.35 at
Tc < T < 50 K.

These anomalous aspects observed in Pu115 superconductors suggest a possibility that
the high transition temperature (Tc = 18.5 K for PuCoGa5 and Tc = 9 K for PuRhGa5) is
promoted at least in part by the enhanced valence–fluctuation of the Pu ion. It should be also
noted that the AF fluctuations do not develop at all in these compounds, judging from the fact
that NMR and NQR relaxation rates 1/T1 follow the Korringa law in rather wide temperature
range [128, 129].

7. Prospects

We have retraced the development of the CVF mechanism of unconventional superconductivity,
in which the role of Coulomb repulsion between f and conduction electrons was emphasized.
We believe this mechanism is more general than first thought, as discussed in section 6.

Quite recently, Watanabe, Imada and the present author reported results [67] on the
density-matrix-renormalization-group analysis for the one-dimensional (1D) version of the
model Hamiltonian (3) in which the conduction band is given as

εk = −t
∑
iσ

(c†
iσ ci+1σ + c†

i+1σ ciσ ), (56)

where t is the nearest-neighbour hopping integral. For the electron number 7/4 per site, V/t =
0.1 and U/t = 100, a first order valence-transition line in the Ufc–εf plane has been determined,
showing that the region of uniform phase is stabilized and phase separation is suppressed due
to quantum fluctuations. On analysis of the exponent of the long-range behaviour of correlation
functions of inter-site pairing, it has been shown that the superconducting correlation becomes
dominant against CDW and SDW ones near the QCP of the valence transition in the region
of uniform phase. This result supports the overall picture of CVF mediated unconventional
superconductivity discussed in [33, 34, 37].

The effect of CVF on the longitudinal relaxation rate 1/T1 of NMR/NQR has not been
discussed in the present paper. At first sight, valence fluctuation gives rise to no essential
effect on 1/T1 since valence fluctuation is a sort of charge fluctuation, and is irrelevant to
magnetic fluctuations. However, the dynamical susceptibility of the f electron χ±

v (q, iωm)

corresponding to the spin-flip process is given in a form essentially similar to equation (46).
Therefore, χ±

v (q, iωm) should be subject to a critical fluctuation associated with the valence
transition, leading to an enhancement of 1/T1. This may be crucial to interpret the enhanced
1/T1 observed in Ce115 compounds away from the magnetic phase boundary.
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91 137001
[44] Balatsky A and Abrahams E 1992 Phys. Rev. B 45 13125

Abrahams E, Balatsky A, Schrieffer J R and Allen P B 1993 Phys. Rev. B 47 513
[45] Fuseya Y, Kohno H and Miyake K 2003 J. Phys. Soc. Japan 72 2914
[46] Kuramoto Y and Miyake K 1990 J. Phys. Soc. Japan 59 2381
[47] Rice T M and Ueda K 1986 Phys. Rev. B 34 6420
[48] Shiba H 1986 J. Phys. Soc. Japan 55 2765
[49] Kadowaki K and Woods S B 1986 Solid State Commun. 58 507
[50] Miyake K, Matsuura T and Varma C M 1989 Solid State Commun. 71 1149
[51] Rice M J 1968 Phys. Rev. Lett. 20 1439
[52] Miyake K and Narikiyo O 2002 J. Phys. Soc. Japan 71 867
[53] Onodera A, Tsuduki S, Ohishi Y, Watanuki T, Ishida K, Kitaoka Y and Ōnuki Y 2002 Solid State Commun.
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